Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(12): 4569-4584, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33730507

RESUMO

1s2p resonant inelastic X-ray scattering (1s2p RIXS) has proven successful in the determination of the differential orbital covalency (DOC, the amount of metal vs ligand character in each d molecular orbital) of highly covalent centrosymmetric iron environments including heme models and enzymes. However, many reactive intermediates have noncentrosymmetric environments, e.g., the presence of strong metal-oxo bonds, which results in the mixing of metal 4p character into the 3d orbitals. This leads to significant intensity enhancement in the metal K-pre-edge and as shown here, the associated 1s2p RIXS features, which impact their insight into electronic structure. Binuclear oxo bridged high spin Fe(III) complexes are used to determine the effects of 4p mixing on 1s2p RIXS spectra. In addition to developing the analysis of 4p mixing on K-edge XAS and 1s2p RIXS data, this study explains the selective nature of the 4p mixing that also enhances the analysis of L-edge XAS intensity in terms of DOC. These 1s2p RIXS biferric model studies enable new structural insight from related data on peroxo bridged biferric enzyme intermediates. The dimeric nature of the oxo bridged Fe(III) complexes further results in ligand-to-ligand interactions between the Fe(III) sites and angle dependent features just above the pre-edge that reflect the superexchange pathway of the oxo bridge. Finally, we present a methodology that enables DOC to be obtained when L-edge XAS is inaccessible and only 1s2p RIXS experiments can be performed as in many metalloenzyme intermediates in solution.


Assuntos
Compostos Férricos/química , Teoria Quântica , Eletrônica , Estrutura Molecular , Espalhamento de Radiação , Raios X
2.
Proc Natl Acad Sci U S A ; 117(10): 5152-5159, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094179

RESUMO

Determining the requirements for efficient oxygen (O2) activation is key to understanding how enzymes maintain efficacy and mitigate unproductive, often detrimental reactivity. For the α-ketoglutarate (αKG)-dependent nonheme iron enzymes, both a concerted mechanism (both cofactor and substrate binding prior to reaction with O2) and a sequential mechanism (cofactor binding and reaction with O2 precede substrate binding) have been proposed. Deacetoxycephalosporin C synthase (DAOCS) is an αKG-dependent nonheme iron enzyme for which both of these mechanisms have been invoked to generate an intermediate that catalyzes oxidative ring expansion of penicillin substrates in cephalosporin biosynthesis. Spectroscopy shows that, in contrast to other αKG-dependent enzymes (which are six coordinate when only αKG is bound to the FeII), αKG binding to FeII-DAOCS results in ∼45% five-coordinate sites that selectively react with O2 relative to the remaining six-coordinate sites. However, this reaction produces an FeIII species that does not catalyze productive ring expansion. Alternatively, simultaneous αKG and substrate binding to FeII-DAOCS produces five-coordinate sites that rapidly react with O2 to form an FeIV=O intermediate that then reacts with substrate to produce cephalosporin product. These results demonstrate that the concerted mechanism is operative in DAOCS and by extension, other nonheme iron enzymes.


Assuntos
Transferases Intramoleculares/química , Ferro/química , Ácidos Cetoglutáricos/química , Ferroproteínas não Heme/química , Proteínas de Ligação às Penicilinas/química , Espécies Reativas de Oxigênio/química , Ativação Enzimática , Oxirredução , Penicilina G/química , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 116(8): 2854-2859, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718404

RESUMO

Hemoglobin and myoglobin are oxygen-binding proteins with S = 0 heme {FeO2}8 active sites. The electronic structure of these sites has been the subject of much debate. This study utilizes Fe K-edge X-ray absorption spectroscopy (XAS) and 1s2p resonant inelastic X-ray scattering (RIXS) to study oxyhemoglobin and a related heme {FeO2}8 model compound, [(pfp)Fe(1-MeIm)(O2)] (pfp = meso-tetra(α,α,α,α-o-pivalamido-phenyl)porphyrin, or TpivPP, 1-MeIm = 1-methylimidazole) (pfpO2), which was previously analyzed using L-edge XAS. The K-edge XAS and RIXS data of pfpO2 and oxyhemoglobin are compared with the data for low-spin FeII and FeIII [Fe(tpp)(Im)2]0/+ (tpp = tetra-phenyl porphyrin) compounds, which serve as heme references. The X-ray data show that pfpO2 is similar to FeII, while oxyhemoglobin is qualitatively similar to FeIII, but with significant quantitative differences. Density-functional theory (DFT) calculations show that the difference between pfpO2 and oxyhemoglobin is due to a distal histidine H bond to O2 and the less hydrophobic environment in the protein, which lead to more backbonding into the O2 A valence bond configuration interaction multiplet model is used to analyze the RIXS data and show that pfpO2 is dominantly FeII with 6-8% FeIII character, while oxyhemoglobin has a very mixed wave function that has 50-77% FeIII character and a partially polarized Fe-O2 π-bond.


Assuntos
Ferro/química , Oxigênio/química , Oxiemoglobinas/química , Porfirinas/química , Domínio Catalítico , Compostos Férricos/química , Heme/química , Metaloporfirinas/química , Modelos Moleculares , Mioglobina/química , Espalhamento de Radiação , Espectroscopia por Absorção de Raios X , Raios X
4.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429333

RESUMO

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Assuntos
Benzeno/química , Ferro/química , Zeolitas/química , Catálise , Domínio Catalítico , Hidroxilação , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fenol/química
5.
Chem Sci ; 9(34): 6952-6960, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30210769

RESUMO

While the synthesis and characterization of {FeNO}7,8,9 complexes have been well documented in heme and nonheme iron models, {FeNO}6 complexes have been less clearly understood. Herein, we report the synthesis and structural and spectroscopic characterization of mononuclear nonheme {FeNO}6 and iron(iii)-nitrito complexes bearing a tetraamido macrocyclic ligand (TAML), such as [(TAML)FeIII(NO)]- and [(TAML)FeIII(NO2)]2-, respectively. First, direct addition of NO(g) to [FeIII(TAML)]- results in the formation of [(TAML)FeIII(NO)]-, which is sensitive to moisture and air. The spectroscopic data of [(TAML)FeIII(NO)]-, such as 1H nuclear magnetic resonance and X-ray absorption spectroscopies, combined with computational study suggest the neutral nature of nitric oxide with a diamagnetic Fe center (S = 0). We also provide alternative pathways for the generation of [(TAML)FeIII(NO)]-, such as the iron-nitrite reduction triggered by protonation in the presence of ferrocene, which acts as an electron donor, and the photochemical iron-nitrite reduction. To the best of our knowledge, the present study reports the first photochemical nitrite reduction in nonheme iron models.

6.
Proc Natl Acad Sci U S A ; 115(18): 4565-4570, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29610304

RESUMO

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Assuntos
Ferro/química , Zeolitas/química , Zeolitas/metabolismo , Catálise , Domínio Catalítico , Hidroxilação/fisiologia , Ferro/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Espectrofotometria/métodos
7.
Angew Chem Int Ed Engl ; 57(26): 7764-7768, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29701293

RESUMO

Naphthalene oxidation with metal-oxygen intermediates is a difficult reaction in environmental and biological chemistry. Herein, we report that a MnIV bis(hydroxo) complex, which was fully characterized by various physicochemical methods, such as ESI-MS, UV/Vis, and EPR analysis, X-ray diffraction, and XAS, can be employed for the oxidation of naphthalene in the presence of acid to afford 1,4-naphthoquinone. Redox titration of the MnIV bis(hydroxo) complex gave a one-electron reduction potential of 1.09 V, which is the most positive potential for all reported nonheme MnIV bis(hydroxo) species as well as MnIV oxo analogues. Kinetic studies, including kinetic isotope effect analysis, suggest that the naphthalene oxidation occurs through a rate-determining electron transfer process.


Assuntos
Complexos de Coordenação/química , Compostos de Manganês/química , Naftalenos/química , Elétrons , Cinética , Modelos Moleculares , Naftoquinonas/síntese química , Oxirredução , Análise Espectral/métodos , Difração de Raios X
8.
Coord Chem Rev ; 345: 182-208, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970624

RESUMO

Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as K resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3d orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of and donor bonding and back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. The application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.

9.
J Am Chem Soc ; 139(26): 8800-8803, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28628312

RESUMO

Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)FeV(NTs)]- (1). The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe-N bond length of 1.65(4) Å, and an Fe-N vibration at 817 cm-1. The reactivity of 1 was demonstrated in C-H bond functionalization and nitrene transfer reactions.


Assuntos
Complexos de Coordenação/química , Imidas/química , Ferro/química , Aminação , Heme/química , Ligantes , Compostos Macrocíclicos/química , Estrutura Molecular
10.
J Am Chem Soc ; 139(3): 1215-1225, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28006897

RESUMO

NO is a classic non-innocent ligand, and iron nitrosyls can have different electronic structure descriptions depending on their spin state and coordination environment. These highly covalent ligands are found in metalloproteins and are also used as models for Fe-O2 systems. This study utilizes iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction multiplet model, to directly experimentally probe the electronic structure of the S = 0 {FeNO}6 compound [Fe(PaPy3)NO]2+ (PaPy3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and the S = 0 [Fe(PaPy3)CO]+ reference compound. This method allows separation of the σ-donation and π-acceptor interactions of the ligand through ligand-to-metal and metal-to-ligand charge-transfer mixing pathways. The analysis shows that the {FeNO}6 electronic structure is best described as FeIII-NO(neutral), with no localized electron in an NO π* orbital or electron hole in an Fe dπ orbital. This delocalization comes from the large energy gap between the Fe-NO π-bonding and antibonding molecular orbitals relative to the exchange interactions between electrons in these orbitals. This study demonstrates the utility of L-edge XAS in experimentally defining highly delocalized electronic structures.


Assuntos
Amidas/química , Piridinas/química , Teoria Quântica , Elétrons , Espectroscopia por Absorção de Raios X
11.
J Am Chem Soc ; 136(52): 18087-99, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25475739

RESUMO

Axial Cu-S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extended to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe-S(Met) bond and its dependence on redox state. These results provide insight into a number of previous chemical and physical results on cyt c.


Assuntos
Citocromos c/química , Imidazóis/química , Ferro/química , Metaloporfirinas/química , Metionina/química , Difração de Raios X , Citocromos c/metabolismo , Transporte de Elétrons , Metaloporfirinas/metabolismo , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...